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The gut microbiome of exudivorous 
marmosets in the wild and captivity
Joanna Malukiewicz1,2*, Reed A. Cartwright3, Jorge A. Dergam4, Claudia S. Igayara5, 
Sharon E. Kessler6, Silvia B. Moreira7, Leanne T. Nash8, Patricia A. Nicola9, 
Luiz C. M. Pereira10, Alcides Pissinatti7, Carlos R. Ruiz‑Miranda11, Andrew T. Ozga13,16, 
Adriana A. Quirino10, Christian Roos1,14, Daniel L. Silva15, Anne C. Stone8,12,16 & 
Adriana D. Grativol11

Mammalian captive dietary specialists like folivores are prone to gastrointestinal distress and primate 
dietary specialists suffer the greatest gut microbiome diversity losses in captivity compared to the 
wild. Marmosets represent another group of dietary specialists, exudivores that eat plant exudates, 
but whose microbiome remains relatively less studied. The common occurrence of gastrointestinal 
distress in captive marmosets prompted us to study the Callithrix gut microbiome composition and 
predictive function through bacterial 16S ribosomal RNA V4 region sequencing. We sampled 59 
wild and captive Callithrix across four species and their hybrids. Host environment had a stronger 
effect on the gut microbiome than host taxon. Wild Callithrix gut microbiomes were enriched for 
Bifidobacterium, which process host‑indigestible carbohydrates. Captive marmoset guts were enriched 
for Enterobacteriaceae, a family containing pathogenic bacteria. While gut microbiome function 
was similar across marmosets, Enterobacteriaceae seem to carry out most functional activities in 
captive host guts. More diverse bacterial taxa seem to perform gut functions in wild marmosets, 
with Bifidobacterium  being important for carbohydrate metabolism. Captive marmosets showed gut 
microbiome composition aspects seen in human gastrointestinal diseases. Thus, captivity may perturb 
the exudivore gut microbiome, which raises implications for captive exudivore welfare and calls for 
husbandry modifications.

The mammalian gut microbiome plays an important role in host  physiology1,2, and microbiome dysbiosis is 
thought to negatively impact host  health3–5. More closely related hosts seem to share more similar microbiome 
communities than more distantly related hosts (i.e., phylosymbiosis)6,7, and gut microbiome communities are 
usually enriched for bacteria associated with the main macronutrients of a host’s feeding  strategy8–12. Yet, envi-
ronmental factors significantly alter individual host  microbiomes10,12, as evidenced by differences in microbi-
ome composition between wild and captive conspecifics across a variety of animal  taxa13–19. Gut microbiome 
studies of captive and wild mammals show that non-human primates (NHPs) experience relatively large losses 
of native gut microbiome diversity in captivity compared to the  wild5,13. Additionally, dietary specialist NHPs 
including folivores (leaf-eating) and frugo-folivores (fruit and leaf-eating) are especially prone to gastrointestinal 
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problems in  captivity20–24. Among humans and NHPs, dysbiosis in gut microbiome composition has been tied 
to gastrointestinal  diseases4,22,25.

A number of mammals, including some primates, are exudivorous, meaning that they nutritionally exploit vis-
cous plant exudates that are composed of  polysaccharides26,27 such as galactan, mannose, arabianans, arabinose, 
xylose, and glucuronic acid (e.g.,28–30). Among mammalian dietary specialists, the exudivore gut microbiome 
remains relatively little studied. Nonetheless, Brazilian Callithrix marmosets, a relatively recent genus of closely-
related NHP  exudivores31, are excellent models to study exudivore gut microbiomes. In the wild, these primates 
nutritionally exploit hard to digest oligosaccharides of tree gums or hardened saps that require fermentation 
by gut microbioata for  digestion32,33. Host specific gastrointestinal adaptions in marmosets that likely facilitate 
microbial polysaccharide fermentation include an enlarged cecum, an elongated colon, and gut transit times 
attuned to gum  digestion34–36. Further, Callithrix species collectively possess a number of morphological adapta-
tions in cranial shape and musculature, dentition, and nail shape that allow them to access natural gum sources 
by gouging and scraping hard plant surfaces such as  bark37–39.

Marmosets are regularly maintained in captivity as biomedical research models, for captive breeding of 
endangered C. aurita, and due to illegal pet  trafficking31. In captivity, marmosets commonly develop symptoms of 
gastrointestinal distress like inflammatory-like bowel disease, chronic malabsorption, chronic diarrhea, chronic 
enteritis, and chronic colitis without clear  pathogenesis40–42. Up to now, most Callithrix gut microbiome studies 
have focused on captive C. jacchus to identify specific bacterial strains and on how life history, social, or labora-
tory conditions affect the gut microbiome  composition41. A review of these studies suggests that there may be 
an association between gastrointestinal distress and gut microbiome dysbiosis in Callithrix41. A necessary first 
step towards understanding diseased gut microbiome composition profiles is defining baseline gut microbiome 
composition variation and function of non-diseased  individuals2. Thus, comparing the gut microbiome of wild 
and captive conspecifics is an important step for such approaches.

Here, we determine gut microbiome profiles of Callithrix sampled in and out of captivity throughout Bra-
zil. We applied 16S ribosomal RNA (rRNA) V4 region amplicon sequencing of Callithrix gut microbiota, and 
investigated gut microbiome composition and gut microbiome predictive functional profiles. Anal swabs were 
sampled in Brazil from 59 healthy individuals of four species and three hybrid types (Table 1) that were either 
wild, translocated into captivity from the wild, or born into captivity (Fig. 1). Our specific aims in this study were 
to evaluate the influence of host taxon and environment on Callithrix gut microbiome composition, diversity, 
and function. As marmosets are considered obligate  exudivores27, we hypothesize that marmoset gut microbi-
ome composition and predictive functional profiles are strongly biased toward carbohydrate metabolism across 
marmoset taxa. Yet, as previous studies have shown differences in gut microbiome composition between wild 
and captive animal  hosts5,13, we hypothesize that Callithrix gut microbiome composition between individual 
hosts differs according to host environmental status (i.e., captive, translocated, wild).

Methods
Sample collection. We collected anal swabs between 2015 and 2016 from 59 adult individuals, and general 
sampling information is summarized in Table 1 and Fig. 1. Supplementary Table S1 gives detailed information 
on each sampled marmoset host including taxon, sampling location, and environment. We considered marmo-
sets older than 11 months as adults, following age criteria based on dental characteristics and genitalia  growth43. 

Table 1.  Information summary on marmoset host taxon, sampling location, hybrid status, sampling location 
and environment. For sampling locations, the following abbreviations are used: CPRJ= Centro de Primatologia 
do Rio de Janeiro, CEMAFAUNA= Centro de Conservação e Manejo de Fauna da Caatinga, and Setor de 
Etologia, SERCAS=Reintrodução e Conservação de Animais Silvestres. For host environment, the following 
abbreviations are used: W=Wild, T= Translocated, C=Captive.

Host taxon Sampling location Approximate collection geographic coordinates N Host environment

C. aurita Guiricema, Minas Gerais, Brazil −21.008 , −42.723 2 W

C. aurita CPRJ, Guapimirim, Rio de Janeiro, Brazil (wild marmosets originally 
from Natividade, Rio de Janeiro, Brazil) −21.061 , −41.977 3 T

C. aurita CPRJ, Guapimirim, Rio de Janeiro, Brazil −22.4881 , −42.913 5 C

C. aurita x Callithrix sp. CPRJ, Guapimirim, Rio de Janeiro, Brazil −22.489 , −42.914 1 C

C. geoffroyi CPRJ, Guapimirim, Rio de Janeiro, Brazil −16.931 , −42.4852 3 C

C. geoffroyi Berilo, Minas Gerais, Brazil −22.489 , −42.914 1 W

C. jacchus Guarulhos Municipal Zoo, Guarulhos, São Paulo, Brazil −23.443 , −46.554 9 C

C. penicillata Guarulhos Municipal Zoo, Guarulhos, São Paulo, Brazil −23.443 , −46.554 4 C

C. penicillata CPRJ, Guapimirim, Rio de Janeiro, Brazil −22.486 , −42.914 1 T

C. penicillata CEMAFAUNA, Petrolina, Pernambuco, Brazil −9.327 , −40.544 2 C

C. jacchus × C. penicillata Guarulhos Municipal Zoo, Guarulhos, São Paulo, Brazil −23.443 , −46.554 1 C

C. jacchus × C. penicillata SERCAS, Campos, RJ, Brazil (wild marmosets originally from Ilha 
D’Agua, Rio de Janeiro, RJ, Brazil) −22.810 , −43.163 16 T

C. jacchus × C. penicillata CPRJ, Guapimirim, Rio de Janeiro, Brazil −22.490 , −42.914 6 T

C. penicillata × C. geoffroyi Viçosa, Minas Gerais, Brazil −20.764 , −42.900 5 W
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Marmoset sampling was authorized and approved by the Brazilian Environmental Ministry (SISBIO protocol# 
47964-2), and the Arizona State University IACUC (protocol# 15-144R). Wild animals were captured with 
Tomahawk style traps baited with bananas. As part of a larger marmoset ’omics’ study (e.g.31), sampled animals 
were immobilized with ketamine (10 mg/kg of body weight) through inner thigh intramuscular injection, pho-
tographed, weighed, measured, examined clinically by veterinarians, and deemed healthy upon examination. 
Copan FLOQ Swabs were gently rotated in the anal region and submerged in storage buffer (50 mM Tris pH 8.0, 
50 mM EDTA, 50 mM Sucrose, 100 mM NaCl, 1% SDS) before being discarded. After processing, animals were 
returned to cages for recovery. Wild marmosets were released at original capture sites. Host taxon identification 
followed previously published phenotype  descriptions44,45 and personal observations by JM and CSI. Hosts were 
also classified by their environment as wild (captured as free-range individuals), translocated (born wild but later 
put into captivity), or captive (born and raised in captivity). This study is reported in accordance to ARRIVE 
guidelines (https:// arriv eguid elines. org/ resou rces/ quest ionna ire). All methods were carried out in accordance 
with relevant international guidelines and regulations.

Sample processing and sequencing. Bacterial DNA extraction from Callithrix anal swabs was carried 
out by following a modified phenol-chloroform  protocol46. Modifications included beating the samples on a 
vortex fitted with a horizontal vortex adaptor (#13000-V1-24, Mo Bio, Carlsbad, CA, USA) for 10 min at step 
“2Aiii,” precipitating samples in 100% ethanol in step “2Axvi” and rehydrating DNA pellets in 25 µ L low TE 
buffer at step “2Axxii.” Extracted DNA was quantified on a Qubit3 (Life Technologies, Carlsbad, CA, USA) 
with a dsDNA HS Assay Kit (Life Technologies). DNA samples obtained for this study have been registered in 
the Brazilian SISGen database under entries # A2E885E, A965629, A5CB6FA, AE784B5, and A07A291. The V4 
region of the bacterial 16S rRNA gene was amplified from sampled DNA in triplicate using the barcoded primer 
set 515f/806r47. Amplicon triplicates were combined for each individual and then pooled in equimolar amounts 
into a multiplexed Illumina sequencing library. The library was purified with a Zymo DNA Concentrator and 
Cleaner-5 (#D4013, Zymo Research, Irving, CA, USA) and size selected for 375–380 base pairs with Agencourt 
Ampure XP (#A63880, Beckman Coulter, Indianapolis, IN, USA) magnetic beads. Libraries were sequenced at 
Arizona State University, USA on an Illumina MiSeq for2x250 cycles.

Bioinformatics and statistical analysis. Code for bioinformatics analysis described below is available 
at http:// github. com/ Calli thrix- omics/ calli thrix_ micro biome. Data were demultiplexed using default param-
eters in QIIME2-2021.248. The DADA2 QIIME2 plug-in49 was used to quality-filter and trim sequences and 
join paired-end reads. Upon trimming, the first 10 and last 30 nucleotides were removed from reverse reads 
due to low base quality. These steps resulted in feature tables of DNA sequences and their per-sample counts. 
 MAAFT50 and  FastTree51, as part of the QIIME2 phylogeny plug-in, aligned and produced a mid-pointed rooted 
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as follows- MG: Minas Gerais, Rio de Janeiro: RJ, Pernambuco: PE, São Paulo: SP; CPRJ: Centro de Primatologia 
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phylogenetic tree of feature sequences. Taxonomic composition of samples was determined with the QIIME2 
Naive Bayes q2-feature-classifier plug-in, which was trained on pre-formatted SILVA reference sequence and 
taxonomy files “Silva 138 SSURef NR99 515F/806R region sequences” and “Silva 138 SSURef NR99 515F/806R 
region taxonomy”52–54 for the portion of the 16S V4 region bounded by the 515F/806R primer pair. The pre-
formatted files were downloaded from docs.qiime2.org/2021.4/data-resources. Taxonomic classification of the 
feature table was carried out with the q2-feature-classifier classify-sklearn command. For further down stream 
analyses, we used the QIIME2 export option to extract a biom format file from the classified feature table as well 
as feature table taxonomic information. Information from the exported biom file and feature table taxonomy 
were merged into a new biom format file with the biom 2.1.1055 command line tool.

For community profiling and comparative analysis, we used the ’Marker-gene Data Profiling’ (MDP) module 
of the MicrobiomeAnalyst web-based  platform56, using the merged biom file from above as well as sample meta-
data given in Supplementary Table S1. At the MicrobiomeAnalyst data filtering step, we left the default settings 
of the ’Low count filter’ to a minimum count of 4 and 20% prevalence in samples and the ’percentage to remove’ 
option under ’Low variance filter’ set to 10% based on the interquantile range. Next, at the data normalization 
step, we chose to rarefy the data to the minimum library size, data was scaled by ’total sum scaling,’ and we did 
not apply any data transformations. Marmoset gut microbiome richness (i.e., the number of observed host gut 
microbiome features as determined in QIIME) was calculated as a measure of alpha-diversity in the Microbi-
omeAnalyst ’Alpha-Diversity Analysis’ submodule. Results of data rarefaction for Callithrix gut microbiome 
alpha diversity analyses are shown in Supplementary Fig. S1. The rarefaction curves shown in this supplementary 
figure all have reached a plateau, indicating sufficient sample coverage for downstream analysis. Normalized and 
filtered data were used in the module with settings configured for host taxon and environment, respectively, and 
’feature’ as the taxonomic level. We evaluated the relationship of marmoset gut microbiome alpha diversity with 
both host environment and taxon by fitting a Poisson distributed generalized linear model (GLM) in  R57. In 
this GLM, host gut microbiome richness was set as the response variable, and host taxon and environment were 
used as the two independent variables. No interaction term was included in the GLM, as we assumed the effects 
of host taxon and environment were independent of each other. Analysis of deviance was used to determine the 
statistical significance of the inclusion of both independent variables in the fitted GLM. Model validity and fit 
was assessed with a plot of standardized deviance residuals against fitted values, Q-Q plot of quantile residuals, 
and identification of influential observation based on leverage and Cook’s distance. Post-hoc analyses for this 
model were performed with Tukey’s HSD test using the glht function from the  multcomp58 R package.

To explore beta diversity of the Callithrix gut microbiome, we calculated the Bray–Curtis dissimilarity indices 
for each host, and then used the indices to make a non-metric multidimensional scaling (NMDS) ordination 
plot in the R vegan  program59. We superimposed both environmental and taxon information for each marmo-
set on to the NMDS plot. To understand whether host environment and taxon had an effect on marmoset gut 
microbiome Bray–Curtis dissimilarity indices, we used adonis2 function in the phyloseq  package60. We fitted 
 PERMANOVA61 models which included the marginal effects of host environment and taxon as independent 
variables and Bray–Curtis dissimilarity indices as the dependent variable. Simulation studies have found that 
PERMANOVA is robust to unbalanced sampling  designs62. The PERMANOVA model was ran with the adnois2 
function. PERMANOVA post-hoc tests of Bray–Curtis dissimilarity indices were carried out as pairwise adonis 
tests with the adonis.pair function from the the  EcolUtils63 R package. The test was run for 1000 permutations 
and p-values were corrected by the false discovery rate (FDR).

To profile gut microbiome bacterial taxa abundance, we used the’ Stacked Bar/Area Plot’ submodule of 
MicrobiomeAnalyst to generate stacked bars of relative bacterial abundance at various taxonomic levels (class 
and genus) according to host taxon and captivity, respectively. Taxa resolution settings were set to merge small 
taxa with total counts of less than 10. Average percentages of gut bacterial classes for marmosets according to 
host taxon and environment were calculated with the MicrobiomeAnalysis ’Interactive Pie Chart Exploration’ 
submodule with same setting as for relative bacterial abundance. To test for significance in differential bacterial 
taxa abundance according to host environment and taxon, respectively, we used  LEfSe64 at the class and genus 
level for bacterial taxa. The LEfSe submodule within MicrobiomeAnalyst was used with the default settings of a 
FDR-adjusted p-value cutoff set to 0.1 and the log LDA cut-off at 2.0.

To explore the functional aspects of the Callithrix gut microbiome, the Kyoto Encyclopedia of Genes and 
Genome Orthology (KEGG) pathways were predicted with  PICRUSt265 by following guidelines at https:// github. 
com/ picru st/ picru st2/ wiki. First, predicted KEGG ORTHOLOGY (KO) functional predictions were carried 
out with the metagenome_pipeline.py script with the—strat_out option. By default, PICRUSt2 excluded all 
features with the nearest sequenced taxon index (NSTI) value > 2 from the output. The average weighted NSTI 
value of the data set after this automatic filtering was 0.08 ±0.12 SD. Then Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway abundances were derived from predicted KO abundances were performed with 
the “–no_regroup” option in the pathway_pipeline.py script in PICRUSt2. We then rounded the unstratified 
KEGG pathway abundance results for alpha and beta analysis of predicted functional pathways of the Callithrix 
gut microbiome. We then turned these results into a phyloseq object in R. For alpha diversity, we used phyloseq 
to estimate the observed number of Callithrix gut microbiome predicted KEGG pathways (i.e. the marmoset 
gut microbiome KEGG pathway richness). We then fit a GLM model with KEGG pathway richness in a similar 
manner as described above for marmoset gut microbiome composition analysis.

Using PICRUSt2 unstratified KEGG pathway abundance results, we generated a relative abundance plot of 
Callithrix gut microbiome KEGG metabolic processes using the Shotgun Data Profiling Module in Microbi-
omeAnalyst. At the MicrobiomeAnalyst data filtering step, we left the default settings of the ’Low count filter’ 
to a minimum count of 4 and 20% prevalence in samples and the ’percentage to remove’ option under ’Low 
variance filter’ set to 10% based on the interquantile range. After MicrobiomAnalyst filters, a total of 137 KEGG 
pathways remained for further analysis. A functional diversity relative abundance plot was generated for KEGG 

https://github.com/picrust/picrust2/wiki
https://github.com/picrust/picrust2/wiki
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metabolism based on category abundance total hits. We grouped this abundance plot by first by host environ-
ment and then indicated host taxon for each host. We tested for significant patterns of differential abundance 
between host environment and taxon, respectively, in MicrobiomeAnalyst using the LEfSe submodule with a 
FDR-adjusted p-value cutoff of 0.1 and Log LDA score of 2.0. Functions of KEGG pathways were derived from 
the KEGG  database66.

BURRITO67, an online interactive visualization module, was used to make links between our bacterial abun-
dance data and predicted functional profiles from the Callithrix gut microbiome. As input, we used bacterial 
taxonomic abundance and taxonomy data based on the biom file originally extracted from QIIME2. We also 
provided a function attribution table based on PICRUSt2 output that linked the functional and taxonomic data 
by following instructions for the convert_table.py script at https:// github. com/ picru st/ picru st2/ wiki. We also 
provided a metadata table to BURRITO which included host environmental classifications. Host taxon informa-
tion was later superimposed manually on result plots manually in Adobe Illustrator.

Results
After initial processing and filtering of individual marmoset gut microbiome libraries, a total of 10,902,292 
sequence reads was obtained with an average of 201,894 (124389.64 ± SD) reads per sample. After quality fil-
tering, 8,885,656 reads remained with an average 164,549.19 (99,524.230 ± SD) reads per sample. Afterward, 
merging of paired-end sequences produced 8,191,034 reads, with an average of 151,685.81 (91,568.49 ± SD) 
reads per sample. This information is detailed in Supplementary Table S2.

Diversity of Callithrix gut microbiome bacterial taxa. Boxplots of alpha diversity in terms of mar-
moset gut microbiome richness for host environment and taxonomic classification, respectively, are shown in 
Fig. 2a,b. Individual host alpha diversity measures are listed in Supplementary Table S1. The GLM model fitted 
for the influence of host taxon and environment on marmoset gut microbiome alpha diversity is summarized in 
Table 2. In the model, post-hoc pairwise host environment comparisons between wild and translocated hosts as 
well as captive and translocated hosts were highly significant (Supplementary Table S3). For host taxon, respec-
tive post-hoc pairwise comparisons between C. aurita and C. jacchus, C. penicillata, and C. jacchus × C. penicil-
lata were highly significant (Supplementary Table S3). Respective pairwise comparisons between C. jacchus and 
C. geoffroyi and C. penicillata × C. geofforyi were also significant (Supplementary Table S3).
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Figure 2.  Boxplots of gut microbiome richness by host taxon (a) and host environment (b). Panel (c) shows 
a NMDS ordination plot for gut microbiome beta-diversity measured by the Bray-Curtis dissimilarity index. 
Legend of host classifications are shown on the right side of each plot.
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For marmoset gut microbiome beta diversity, a NMDS plot of Bray-Curtis dissimilarity index with super-
imposed host environment and taxon is shown in Figure 2c. The effects of host environment on marmoset gut 
microbiome beta diversity were significant (PERMANOVA, R2=0.09, df=2, p=0.001), while those of host taxon 
were not (PERMANOVA, R2=0.14, df=6, p=0.06). Post-hoc analysis of all possible combinations of host envi-
ronmental levels were found to be significant (p-value=0.001).

Callithrix gut microbiome bacterial taxon composition and abundance. Figure 3a shows relative 
abundances of bacterial classes for hosts according to their environmental and taxon classification. These plots 
show that captive marmosets had relatively high abundance of Gammoproteobacteria (average abundance 60%). 
Translocated marmosets seem to have relatively high abundance of Campylobacteria (average abundance 36%) . 
Wild marmosets have an average relative abundance of Campylobacteria of 33% and an Actinobacteria average 
relative abundance of 41%. For highest gut bacterial abundances among marmoset taxa, Gammaoproteobacteria 
was the most abundant bacterial class for C. aurita (39%), C. geoffroyi (55%), C. jacchus (72%), and C. penicillata 
(41%). Campylobacteria was most abundant in C. jacchus × C. penicillata  hybrids (31%), while Actinobacteria 

Table 2.  Analysis of deviance for GLM (Richness ∼ Host Taxon + Host Environment) fitted for Callithrix gut 
microbiome compositional alpha diversity. Significant values are in bold.

Term Degrees of freedom Deviance Residual degrees of freedom Residual deviance p-value χ2

Null 52 483.32

Host taxon 5 282.32 47 201.00 < 2.20e − 16

Host environment 2 31.30 45 169.70 1.60e – 07

Figure 3.  (a) Relative class level bacterial abundance (lower legend) by host environment (Captive, 
Translocated, and Wild) and taxon (see right-side legend). (b) LefSe analysis of bacterial class abundance 
categorized by host environment. (c) LefSe analysis of bacterial genus abundance categorized by host 
environment. The corresponding legends for plots (b) and (c) are to the right of both plots.
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was highest in C. penicillata × C. geofforyi hybrids (44%). Enterobacteriaceae were the most abundant bacterial 
family in the gut microbiome of captive marmosets (47%). For translocated marmosets, Heliobacter was most 
abundant in the gut microbiome (28%). Then for wild marmosets, the most abundant bacterial genus in the 
gut microbiome was Bifidobacterium. LefSe differential gut microbiome bacteria abundance analysis at class 
and genus levels support the statistical significance of these differences among marmoset hosts (Fig. 3b,c, Sup-
plementary Fig. S2).

Diversity of predicted functional pathways of the Callithrix gut microbiome. A total of 183 
KEGG predictive pathways were identified among our sampled marmoset hosts (Supplementary Table S4). Box-
plots of KEGG pathways richness of the Callithrix gut microbiome according to host taxon and environment, 
respectively, are shown in Fig. 4a,b. KEGG pathway richness values for individual hosts are listed in Supplemen-
tary Table S1. The GLM fit to explain the effects of host environment and taxon on gut KEGG pathway alpha 
diversity is summarized in Table 3. Neither host environment nor taxon were significant in the fitted model for 
having an effect on the alpha diversity of marmoset predicted KEGG pathways of the gut microbiome.

For marmoset gut microbiome KEGG pathway beta diversity, Bray-Curtis dissimilarity index values were 
plotted on a NMDS ordination plot with superimposition of both host environment and taxon (Fig. 4c). Neither 
the effects of host environment (PERMANOVA, R2 = 0.07, df = 2 p = 0.140) nor host taxon (PERMANOVA, 
R2 = 0.12, df = 6, p = 0.493) had a significant effect on Callithrix gut predicted KEGG pathway beta diversity.

Figure 4.  Boxplots of gut microbiome predicted gut KEGG pathways richness by host taxon (a) and host 
environment (b). Panel (c) shows a NMDS ordination plot for gut microbiome predicted gut KEGG pathways 
beta-diversity measured by the Bray–Curtis dissimilarity index. Legend of host classifications are shown on the 
right side of each plot.

Table 3.  Analysis of deviance for GLM (Richness ∼ Host Taxon + Host Environment) fitted for Callithrix gut 
microbiome functional alpha diversity.

Term Degrees of freedom Deviance Residual degrees of freedom Residual deviance p-value χ2

Null 44 23.69

Host taxon 6 7.30 38 16.39 0.29

Host environment 2 0.18 36 16.21 0.92
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Callithrix gut microbiome KEGG pathway composition and abundance. For relative abundance 
of predicted KEGG pathways of the Callithrix gut microbiome, sampled marmoset distributions showed an even 
distribution of KEGG metabolism categories, with carbohydrate metabolism being one of the most abundant 
categories (Fig. 5a). For relative abundance of predicted KEGG pathways of the Callithrix gut microbiome, sam-
pled marmoset distributions showed an even distribution of KEGG metabolism categories, with carbohydrate 
metabolism being one of the most abundant categories (Fig. 5a). Visual inspection of the plot shows that this 
pattern holds regardless of host environmental or taxon categorization. LEfSe analysis for the top significantly 
enriched predicted KEGG pathways in the marmoset gut is shown for host environment in Fig. 5b and for host 
taxon in Fig. 5c. All top predicted KEGG gut microbiome pathways were enriched for in captive marmosets. The 
top most pathway was K01051 (LDA = 4.8) and is involved with carbohydrate metabolism of pectinesterase. This 
same pathway is also enriched in C. aurita and C. jacchus. The orthology of remaining pathways in Fig. 5b,c is 
given in Supplementary Table S5.

Linkage analysis between Callithrix gut bacterial taxa and predicted gut microbiome function are shown 
in Fig. 6 and Supplementary Figures S3 and S4 for major bacterial and functional classes. Visual inspection of 
the three figures shows overall that different sets of bacterial taxa are responsible for carrying out different gut 
functional activities between captive and wild marmosets. Actinobacteria take on a number of functional roles 
in the Callithrix gut microbiome almost exclusively within wild hosts (Supplementary Fig. S3). Bifidobacterium 
seems especially important among wild marmosets for carbohydrate and amino acid metabolism (Fig. 6a). On the 
other hand, Proteobacteria seem to be heavily involved across variable major functions in the gut of captive and 
translocated marmosets (Supplementary Fig. S3). Enterobacteriaceae seem to be carrying out a large number of 
functional roles, including across major categories of metabolic pathways in captive and translocated marmosets 
(Fig. 6b). For other classes of bacteria found in the Callithrix gut, Bacteroidota, Firmicutes, and Campilobacterota 
seem to take on a broad number of functional roles in both translocated and captive marmosets (Supplemen-
tary Fig. S4). The latter two also seems to also perform broad gut functional roles in a smaller subset of captive 
marmoset hosts (Supplementary Fig. S4).

Figure 5.  (a) Relative abundance of predicted KEGG pathways by host environment and taxon classification. 
(b) LefSe analysis of predicted KEGG pathway abundance by host environment. (c) LefSe analysis of predicted 
KEGG pathway abundance by host taxon. Legend of host classifications are shown to the right of each plot.
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Discussion
In terms of Callithrix gut microbiome community structure, we found host taxon to significantly influence 
alpha diversity but not beta diversity. The significant pairwise differences in gut microbiome richness between 
C. jacchus, C. penicillata, and other marmosets may be related to relative differences for exudivory specialization 

Figure 6.  Visualization of BURRITO results showing linkage between Callithrix gut bacterial taxa composition 
and predicted functional profiles. In each plot, the lower left corner shows bacterial taxa relative abundance 
and the lower right shows predicted relative abundances of major functional categories of the Callithrix 
gut. The middle upper portion of each plot shows distribution of involvement of specific bacterial taxa in 
functional processes. Thickness of connecting lines between bacterial classes and functional classes indicates 
stronger involvement of a given bacterial taxon in a given functional process. The position of bacterial taxa 
and functional processes among respective relative abundance plots is represented by diagonal stripes. Host 
environment classifications in all plots are classified by C = Captive, T = Translocated, and W = Wild. (a) 
Distribution of Bifidobacterium role (highlighted in red) in predicted functional processes, with expansion of 
metabolic processes. (b) Distribution of Enterobacteriaceae role (highlighted in red) in predicted functional 
processes, with expansion of metabolic processes. Legend of host classifications are shown to the right of the 
plots.
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between Callithrix  taxa31. For example, C. aurita showed the lowest gut microbiome richness and is relatively 
one of the less specialized Callithrix taxa for exudate  consumption31. In contrast, C. jacchus and C. penicillata are 
relatively the most specialized marmosets for  gumnivory31, and possessed the highest levels of gut microbiome 
richness. A recent study of wild lemurs found that microbiomes, metagenomes, and metabolomes were species-
specific and attuned to host dietary specializations and associated gastrointestinal  morphology68. For Callithrix, a 
similar systematic study of taxa along a sliding scale of evolutionary specialization for exudivory is necessary to be 
undertaken with wild marmosets to better understand how host phylogeny influences gut microbiome diversity.

For host environment, our results supported the hypothesis that Callitrhix host gut microbiome composition 
differs according to host environmental status. For example, significant differences were found between all host 
environmental classes for marmoset gut microbiome beta diversity, which is a result observed in various other 
animals (e.g.,  kiwis15, Tasmanian  devil17,  mice16,  primates5,  raptors69,  rhinos18,  woodrats70). A unique aspect of our 
study was the inclusion of hosts translocated from the wild into captivity, which were also significantly different 
from wild and captive hosts in terms of gut microbiome alpha diversity. In a similar vein, the gut microbiome of 
captive Tasmanian devils translocated into the wild exhibited temporal changes in gut microbiome diversity in 
response to the host’s changing environmental  conditions17. Translocated hosts seem to importantly represent a 
dynamic transitional state between the relative extremes of wild and captive environments, which induce changes 
in host gut microbiome diversity. Overall, previous studies agree that dietary differences between host captive 
and wild environments are one of the main factors driving some of these gut microbiome  changes5,13–18,18,19,69,70.

In our sample, the gut microbiome of wild Callithrix was significantly enriched for the bacterial class of 
Actinobacteria, especially Bifidobacterium, and high abundance of Bifidobacterium in the gut microbiome may 
be a key biomarker for host gut microbiome eubiosis in  marmosets41. This bacterial genus was also observable 
in the gut microbiome of captive and translocated marmosets we sampled, but to a much lesser degree. Across 
primates, Callithrix along with the closely related Leontopithecus  are the two primate genera with the highest 
average abundance of Bifidobacterium (> 30%) in the primate gut microbiome, followed by members of the 
Hominidae family (10%)71. While our sample size of wild marmosets was smaller relative to the number of cap-
tive and translocated/marmosets, our results are nonetheless the first to show that Bifidobacterium seem to be 
an integral part of the wild Callithrix gut microbiome. However, we were not able to determine the exact species 
of Bifidobacterium present in the gut of wild marmosets. Thus, an important next step in marmoset microbiome 
studies will be to expand study of wild marmosets and resolve wild Callithrix gut microbiome composition at the 
bacterial species level. Phylosymbiosis represents one promising approach to address this issue, as it combines 
genomic input data in the form of host phylogenetic markers or whole genomes and microbiome phylogenetic 
marker or meta-omics  data7.

Several studies suggest that Bifidobacterium is a key component of the Callithrix gut microbiome to sup-
port carbohydrate  metabolism71–73. In captive C. jacchus, species of Bifidobacteria in the gut microbiome were 
specific to host taxon and provided metabolic functions in line with C. jacchus’ relatively extreme adaptation to 
 exudivory73. The Bifidobacteria  group is especially efficient at metabolizing carbon sources like arabinogalactan 
and  pectin71, which are components of carbohydrates of plant gums consumed by  marmosets74. The genomes 
of three isolates of Bifidobacterium callitrichos from a captive C. jacchus fecal sample contained predicted genes 
associated with galactose and arabinose metabolism, which are also major constituents of tree gums eaten by 
C. jacchus75. In 3 US captive facilities, C. jacchus collectively shared four species of Bifidobacterium, which pos-
sessed genes encoding ATP-binding cassette proteins important for nutrient transport that may be specific to 
the marmoset  gut72.

From this and previous studies, the gut microbiome composition of captive marmosets shows similarity 
to certain aspects of the gut microbiome composition of human gastrointestinal diseases associated with gut 
microbiome  dysbiosis4,27,41,76. In our sample, the captive marmoset gut microbiome was overwhelming enriched 
for the Gammaproteobacteria bacterial class, and in particular from the family Enterobacteriaceae. In patients of 
Crohn’s Disease, the gut microbiome composition is enriched for bacterial taxa that include Enterobacteriaceae 
and depleted for  Bifidobacteriaceae27,77. A similar pattern was observed in captive C. jacchus with gastrointes-
tinal disease, which show various changes such as lowered Bifidobacteria abundance, rise in Clostridium sensu 
stricto, and the presence of Enterobacteriaceae in the cases of marmosets with inflammatory bowel  disease41. 
Enterobacteriaceae is frequently associated with intestinal diseases and contains a number of pathogenic bacte-
rial strains of Salmonella, Escherichia, and  Shigella78,79. Perhaps the presence of Enterobacteriaceae in healthy 
captive marmosets makes them more susceptible for developing eventual gastrointestinal problems, as this is a 
shift away from the eubiosis of natural marmoset gut microbiome composition.

Translocated marmoset gut microbiome composition shows similarity to that of captive marmoset in being 
significantly enriched for the Proteobacteria phylum. However, translocated hosts possess a greater diversity of 
bacteria taxa within this phylum, as opposed to the higher gut Enterobacteriaceae abundance in captive hosts. 
One enriched Proteobacteria genus of note in the gut of translocated Callithrix was Helicobacter, of which certain 
species like H. pylori are known to cause gastric disease in  humans80. Another Proteobacteria genus which was 
enriched in the translocated marmoset gut was Campylobacter. This bacterial genus is associated with diarrhea 
illness in  humans81. Bacteroidetes and Clostridia were significantly abundant in the gut of translocated marmo-
sets, a pattern also seen in the human gastrointestinal disease of ulcerative  colitis77.

Despite the differences in gut bacterial composition and abundance among the marmosets in our sample, their 
gut microbiome seems to perform the same set of broad functions. Carbohydrate and amino acid metabolism are 
among the major functions carried out by the Callithrix gut microbiome in this study. However, closer inspection 
shows differential abundance of specific KEGG pathways between marmoset hosts from different environments. 
Further, there seems to be a stark difference in the distribution of functional roles among bacterial taxa found in 
the gut microbiome in captive, translocated, and wild marmosets. A relatively wider diversity of bacterial taxa 
take on functional roles in the gut microbiome of translocated and wild marmosets. Bifidobacterium seems to 
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take a prominent role in amino acid and carbohydrate metabolism in wild marmosets, a pattern not replicated 
in non-wild marmosets. Instead, in captive and translocated marmosets, Proteobacteria seem to dominate func-
tional roles of the gut microbiome. In captive marmosets, Enterobacteriaceae seem to dominate all aspects of 
gut microbiome function.

Given that gastrointestinal distress is highly prevalent in captive dietary specialist  NHPs21–24, several authors 
suggest that host dietary specialization and its direct connection with the gut microbiome is an important factor 
affecting health outcomes of captive hosts. Certain bacteria are selected for in the gut according to the energetic 
substrates available from the host  diet82, thus designing captive diets need to be planned  carefully83. It is plausi-
ble that such dietary-based selection for specific bacteria within the gut microbiome of marmosets is reflected 
within our data set based on observed differences in alpha diversity and abundance, respectively, of bacterial 
communities between captive, translocated, and wild marmosets. The chemical composition of sugars in the 
marmoset diet have be most explored in Callithrix jacchus, and include beta-linked polyssachrides composed on 
galactose, arabinose, and  rhamnose75. Additionally, pectin is another carbohydrate found in the bark of Anade-
nanthera peregrina, which is consumed by various taxa of  marmosets74. Wild marmosets also generally exploit 
other nutritional sources such as fruit, fungi, and small  prey31,84. In captivity, marmosets diets do not reflect what 
marmosets would normally eat in nature. When gum is supplied to marmosets in captivity, the most commonly 
used source is arabica  gum42. However, most captive institutions do not supplement marmoset diets with gum, 
and instead they generally combine different proportions of commercial chow, fruits, vegetables, protein, and 
 sweets42. Captive Brazilian facilities where we sampled marmosets for this study also follow similar husbandry 
practices for marmoset nutrition (Table 4) as that described by Goodroe et al42.

One concern for a lack of tree gums in the diet of captive specialist exudivores is the development of health 
issues as well as a negative impact on breeding and  survivability85,86. In humans suffering from gastrointestinal 
diseases, increasing plant-based foods and dietary fiber, resulted in increasing microbiome diversity, remission 
of gastrointestinal symptoms, and decreasing risk of gastrointestinal  distress4,87. Such diets may increase gut 
abundance of bacteria such as Bifibacterium that produce short chain fatty acids like butyrate, which may guard 
against proliferation of pathogenic bacteria in the gut and decrease chronic  inflammation4,87. Lack of access to 
a natural-wild diet for marmosets and other exudivory specialists may also promote loss of native gut microbes 
like Bifidobacterium and enrichment of potentially pathogenic bacterial strains of Enterobacteriaceae. It has 
also been demonstrated in mice and wood-rats that feeding more natural diets to individuals in captivity helped 
maintain host gut microbiome composition profiles closer to wild, free-ranging  hosts88,89. One noteworthy 
study of folivorous captive sifakas carried out systematic experimental dietary manipulations while integrating 
metagnomics and metabolomics data to determine how foliage quality affected gut microbiome composition and 
production of colonic short chain fatty acids. We stress that similar studies need to be undertaken for marmosets 
and specialized  exudivores23. There is especially a need to determine if provisioning of gum in the diet of captive 
exudivores will lead to improved host welfare by maintaining gut microbiomes closer to that of wild populations.

Our major study findings are consistent with previous studies in showing that gut microbiome composition 
is sensitive to host environmental factors, and that Bifidobacterium may be an important biomarker for mar-
moset gut microbiome health. We also show that carbohydrate metabolism is a key function of the Callithrix 
gut microbiome. It will be, nonetheless, important for future studies to further confirm and replicate these 
findings given some of the inherent limitations of our study. Given our limited sampling of wild marmosets, 
further studies with expanded sampling of wild individuals representing all Callithrix species are still needed. 
For microbiome studies of marmosets in captivity, as most previous studies are highly biased towards C. jac-
chus, future studies also should strive to expand sampling to other marmoset species. Hybridization is also an 
extremely common occurrence in marmosets, which should be further explored in relation to the marmoset 
microbiome. As our data set was highly biased toward C. jacchus × C. penicillata hybrids, expanding sampling 
other types of free-ranging and captive marmoset hybrids is necessary to move marmoset microbiome studies 
forward. Our predictive results should be also interpreted cautiously as representation of microorganisms in 
databases used by microbiome predictive function programs is biased toward those associated with humans and 
 biotechnology90,91. As a result, the inferential power of programs such as PICRUSt2 drops off significantly for 
non-human microbiome  datasets91. Utilizing shotgun whole metagenomic and/or transcriptomic approaches 
in lieu of 16s rRNA approaches for functional as well as taxonomical microbiome characterization would be 
one way to significantly increase the inferential power of datasets such as  ours92,93. For exudivores in general, 
more studies are needed to understand better the health and reproductive consequences of omitting as well as 
increasing gum intake by specialized exudivores in captivity. Overall, such information will expand baseline 
gut microbiome data available for wild and non-wild exudivores to allow for the development of new tools to 
improve exudiviore management, welfare, and conservation.

Table 4.  Diet collectively fed to marmoset hosts in sampled captive facilities.

Fruits Papaya, orange, banana, apple, pear, avacado, kiwi, melon, mango

Carbs Sweet potato, potato, beets

Vegetables Cucumber, eggplant, pumpkin, chuchu, cauliflower, carrots

Proteins Cooked chicken, cooked egg
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Data availability
The dataset supporting the conclusions of this article is available in the NCBI SRA repository under Bioproject 
PRJNA574641.
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